Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26
1.
Sci Rep ; 14(1): 7633, 2024 04 01.
Article En | MEDLINE | ID: mdl-38561395

Previous studies have developed and explored magnetic resonance imaging (MRI)-based machine learning models for predicting Alzheimer's disease (AD). However, limited research has focused on models incorporating diverse patient populations. This study aimed to build a clinically useful prediction model for amyloid-beta (Aß) deposition using source-based morphometry, using a data-driven algorithm based on independent component analyses. Additionally, we assessed how the predictive accuracies varied with the feature combinations. Data from 118 participants clinically diagnosed with various conditions such as AD, mild cognitive impairment, frontotemporal lobar degeneration, corticobasal syndrome, progressive supranuclear palsy, and psychiatric disorders, as well as healthy controls were used for the development of the model. We used structural MR images, cognitive test results, and apolipoprotein E status for feature selection. Three-dimensional T1-weighted images were preprocessed into voxel-based gray matter images and then subjected to source-based morphometry. We used a support vector machine as a classifier. We applied SHapley Additive exPlanations, a game-theoretical approach, to ensure model accountability. The final model that was based on MR-images, cognitive test results, and apolipoprotein E status yielded 89.8% accuracy and a receiver operating characteristic curve of 0.888. The model based on MR-images alone showed 84.7% accuracy. Aß-positivity was correctly detected in non-AD patients. One of the seven independent components derived from source-based morphometry was considered to represent an AD-related gray matter volume pattern and showed the strongest impact on the model output. Aß-positivity across neurological and psychiatric disorders was predicted with moderate-to-high accuracy and was associated with a probable AD-related gray matter volume pattern. An MRI-based data-driven machine learning approach can be beneficial as a diagnostic aid.


Alzheimer Disease , Cognitive Dysfunction , Humans , Brain/pathology , Amyloid beta-Peptides , Magnetic Resonance Imaging/methods , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Machine Learning , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Apolipoproteins
2.
Brain Commun ; 6(2): fcae075, 2024.
Article En | MEDLINE | ID: mdl-38510212

Frontotemporal dementia refers to a group of neurodegenerative disorders with diverse clinical and neuropathological features. In vivo neuropathological assessments of frontotemporal dementia at an individual level have hitherto not been successful. In this study, we aim to classify patients with frontotemporal dementia based on topologies of tau protein aggregates captured by PET with 18F-florzolotau (aka 18F-APN-1607 and 18F-PM-PBB3), which allows high-contrast imaging of diverse tau fibrils in Alzheimer's disease as well as in non-Alzheimer's disease tauopathies. Twenty-six patients with frontotemporal dementia, 15 with behavioural variant frontotemporal dementia and 11 with other frontotemporal dementia phenotypes, and 20 age- and sex-matched healthy controls were included in this study. They underwent PET imaging of amyloid and tau depositions with 11C-PiB and 18F-florzolotau, respectively. By combining visual and quantitative analyses of PET images, the patients with behavioural variant frontotemporal dementia were classified into the following subgroups: (i) predominant tau accumulations in frontotemporal and frontolimbic cortices resembling three-repeat tauopathies (n = 3), (ii) predominant tau accumulations in posterior cortical and subcortical structures indicative of four-repeat tauopathies (n = 4); (iii) amyloid and tau accumulations consistent with Alzheimer's disease (n = 4); and (iv) no overt amyloid and tau pathologies (n = 4). Despite these distinctions, clinical symptoms and localizations of brain atrophy did not significantly differ among the identified behavioural variant frontotemporal dementia subgroups. The patients with other frontotemporal dementia phenotypes were also classified into similar subgroups. The results suggest that PET with 18F-florzolotau potentially allows the classification of each individual with frontotemporal dementia on a neuropathological basis, which might not be possible by symptomatic and volumetric assessments.

3.
Sci Rep ; 14(1): 7129, 2024 03 26.
Article En | MEDLINE | ID: mdl-38531908

Cognitive dysfunction, especially memory impairment, is a typical clinical feature of long-term symptoms caused by repetitive mild traumatic brain injury (rmTBI). The current study aims to investigate the relationship between regional brain atrophy and cognitive impairments in retired athletes with a long history of rmTBI. Overall, 27 retired athletes with a history of rmTBI (18 boxers, 3 kickboxers, 2 wrestlers, and 4 others; rmTBI group) and 23 age/sex-matched healthy participants (control group) were enrolled. MPRAGE on 3 T MRI was acquired and segmented. The TBV and TBV-adjusted regional brain volumes were compared between groups, and the relationship between the neuropsychological test scores and the regional brain volumes were evaluated. Total brain volume (TBV) and regional brain volumes of the mammillary bodies (MBs), hippocampi, amygdalae, thalami, caudate nuclei, and corpus callosum (CC) were estimated using the SPM12 and ITK-SNAP tools. In the rmTBI group, the regional brain volume/TBV ratio (rmTBI vs. control group, Mann-Whitney U test, p < 0.05) underwent partial correlation analysis, adjusting for age and sex, to assess its connection with neuropsychological test results. Compared with the control group, the rmTBI group showed significantly lower the MBs volume/TBV ratio (0.13 ± 0.05 vs. 0.19 ± 0.03 × 10-3, p < 0.001). The MBs volume/TBV ratio correlated with visual memory, as assessed, respectively, by the Rey-Osterrieth Complex Figure test delayed recall (ρ = 0.62, p < 0.001). In conclusion, retired athletes with rmTBI have MB atrophy, potentially contributing to memory impairment linked to the Papez circuit disconnection.


Brain Concussion , Brain Injuries, Traumatic , Humans , Mammillary Bodies , Brain , Memory Disorders/etiology , Athletes/psychology , Brain Injuries, Traumatic/complications
4.
Alzheimers Res Ther ; 15(1): 149, 2023 09 04.
Article En | MEDLINE | ID: mdl-37667408

BACKGROUND: Plasma biomarkers have emerged as promising screening tools for Alzheimer's disease (AD) because of their potential to detect amyloid ß (Aß) accumulation in the brain. One such candidate is the plasma Aß42/40 ratio (Aß42/40). Unlike previous research that used traditional immunoassay, recent studies that measured plasma Aß42/40 using fully automated platforms reported promising results. However, its utility should be confirmed using a broader patient population, focusing on the potential for early detection. METHODS: We recruited 174 participants, including healthy controls (HC) and patients with clinical diagnoses of AD, frontotemporal lobar degeneration, dementia with Lewy bodies/Parkinson's disease, mild cognitive impairment (MCI), and others, from a university memory clinic. We examined the performance of plasma Aß42/40, measured using the fully automated high-sensitivity chemiluminescence enzyme (HISCL) immunoassay, in detecting amyloid-positron emission tomography (PET)-derived Aß pathology. We also compared its performance with that of Simoa-based plasma phosphorylated tau at residue 181 (p-tau181), glial fibrillary acidic protein (GFAP), and neurofilament light (NfL). RESULTS: Using the best cut-off derived from the Youden Index, plasma Aß42/40 yielded an area under the receiver operating characteristic curve (AUC) of 0.949 in distinguishing visually assessed 18F-Florbetaben amyloid PET positivity. The plasma Aß42/40 had a significantly superior AUC than p-tau181, GFAP, and NfL in the 167 participants with measurements for all four biomarkers. Next, we analyzed 99 participants, including only the HC and those with MCI, and discovered that plasma Aß42/40 outperformed the other plasma biomarkers, suggesting its ability to detect early amyloid accumulation. Using the Centiloid scale (CL), Spearman's rank correlation coefficient between plasma Aß42/40 and CL was -0.767. Among the 15 participants falling within the CL values indicative of potential future amyloid accumulation (CL between 13.5 and 35.7), plasma Aß42/40 categorized 61.5% (8/13) as Aß-positive, whereas visual assessment of amyloid PET identified 20% (3/15) as positive. CONCLUSION: Plasma Aß42/40 measured using the fully automated HISCL platform showed excellent performance in identifying Aß accumulation in the brain in a well-characterized cohort. This equipment may be useful for screening amyloid pathology because it has the potential to detect early amyloid pathology and is readily applied in clinical settings.


Alzheimer Disease , Amyloid beta-Peptides , Humans , Amyloidogenic Proteins , Immunoassay , Positron-Emission Tomography , Alzheimer Disease/diagnostic imaging
5.
Eur J Nucl Med Mol Imaging ; 50(13): 3928-3936, 2023 11.
Article En | MEDLINE | ID: mdl-37581725

PURPOSE: The topological distribution of dopamine-related proteins is determined by gene transcription and subsequent regulations. Recent research strategies integrating positron emission tomography with a transcriptome atlas have opened new opportunities to understand the influence of regulation after transcription on protein distribution. Previous studies have reported that messenger (m)-RNA expression levels spatially correlate with the density maps of serotonin receptors but not with those of transporters. This discrepancy may be due to differences in regulation after transcription between presynaptic and postsynaptic proteins, which have not been studied in the dopaminergic system. Here, we focused on dopamine D1 and D2/D3 receptors and dopamine transporters and investigated their region-wise relationship between mRNA expression and protein distribution. METHODS: We examined the region-wise correlation between regional binding potentials of the target region relative to that of non-displaceable tissue (BPND) values of 11C-SCH-23390 and mRNA expression levels of dopamine D1 receptors (D1R); regional BPND values of 11C-FLB-457 and mRNA expression levels of dopamine D2/D3 receptors (D2/D3R); and regional total distribution volume (VT) values of 18F-FE-PE2I and mRNA expression levels of dopamine transporters (DAT) using Spearman's rank correlation. RESULTS: We found significant positive correlations between regional BPND values of 11C-SCH-23390 and the mRNA expression levels of D1R (r = 0.769, p = 0.0021). Similar to D1R, regional BPND values of 11C-FLB-457 positively correlated with the mRNA expression levels of D2R (r = 0.809, p = 0.0151) but not with those of D3R (r = 0.413, p = 0.3095). In contrast to D1R and D2R, no significant correlation between VT values of 18F-FE-PE2I and mRNA expression levels of DAT was observed (r = -0.5934, p = 0.140). CONCLUSION: We found a region-wise correlation between the mRNA expression levels of dopamine D1 and D2 receptors and their respective protein distributions. However, we found no region-wise correlation between the mRNA expression levels of dopamine transporters and their protein distributions, indicating different regulatory mechanisms for the localization of pre- and postsynaptic proteins. These results provide a broader understanding of the application of the transcriptome atlas to neuroimaging studies of the dopaminergic nervous system.


Brain , Dopamine , Humans , Dopamine/metabolism , Brain/diagnostic imaging , Brain/metabolism , Positron-Emission Tomography/methods , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D3/genetics , Receptors, Dopamine D3/metabolism , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression
6.
Sci Rep ; 13(1): 11655, 2023 07 19.
Article En | MEDLINE | ID: mdl-37468523

Increased excitatory neuronal tones have been implicated in autism, but its mechanism remains elusive. The amplified glutamate signals may arise from enhanced glutamatergic circuits, which can be affected by astrocyte activation and suppressive signaling of dopamine neurotransmission. We tested this hypothesis using magnetic resonance spectroscopy and positron emission tomography scan with 11C-SCH23390 for dopamine D1 receptors in the anterior cingulate cortex (ACC). We enrolled 18 male adults with high-functioning autism and 20 typically developed (TD) male subjects. The autism group showed elevated glutamate, glutamine, and myo-inositol (mI) levels compared with the TD group (p = 0.045, p = 0.044, p = 0.030, respectively) and a positive correlation between glutamine and mI levels in the ACC (r = 0.54, p = 0.020). In autism and TD groups, ACC D1 receptor radioligand binding was negatively correlated with ACC glutamine levels (r = - 0.55, p = 0.022; r = - 0.58, p = 0.008, respectively). The enhanced glutamate-glutamine metabolism might be due to astroglial activation and the consequent reinforcement of glutamine synthesis in autistic brains. Glutamine synthesis could underly the physiological inhibitory control of dopaminergic D1 receptor signals. Our findings suggest a high neuron excitation-inhibition ratio with astrocytic activation in the etiology of autism.


Autistic Disorder , Glutamine , Male , Adult , Humans , Glutamine/metabolism , Glutamic Acid/metabolism , Autistic Disorder/metabolism , Astrocytes/metabolism , Dopamine/metabolism , Brain/diagnostic imaging , Brain/metabolism , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/metabolism
7.
Schizophr Bull ; 49(3): 688-696, 2023 05 03.
Article En | MEDLINE | ID: mdl-36458958

BACKGROUND AND HYPOTHESIS: Phosphodiesterase 10A (PDE10A) is a highly expressed enzyme in the basal ganglia, where cortical glutamatergic and midbrain dopaminergic inputs are integrated. Therapeutic PDE10A inhibition effects on schizophrenia have been reported previously, but the status of this molecule in the living patients with schizophrenia remains elusive. Therefore, this study aimed to investigate the central PDE10A status in patients with schizophrenia and examine its relationship with psychopathology, cognition, and corticostriatal glutamate levels. STUDY DESIGN: This study included 27 patients with schizophrenia, with 5 antipsychotic-free cases, and 27 healthy controls. Positron emission tomography with [18F]MNI-659, a specific PDE10A radioligand, was employed to quantify PDE10A availability by measuring non-displaceable binding potential (BPND) of the ligand in the limbic, executive, and sensorimotor striatal functional subregions, and in the pallidum. BPND estimates were compared between patients and controls while controlling for age and gender. BPND correlations were examined with behavioral and clinical measures, along with regional glutamate levels quantified by the magnetic resonance spectroscopy. STUDY RESULTS: Multivariate analysis of covariance demonstrated a significant main effect of diagnosis on BPND (p = .03). A posthoc test showed a trend-level higher sensorimotor striatal BPND in patients, although it did not survive multiple comparison corrections. BPND in controls in this subregion was significantly and negatively correlated with the Tower of London scores, a cognitive subtest. Striatal or dorsolateral prefrontal glutamate levels did not correlate significantly with BPND in either group. CONCLUSIONS: The results suggest altered striatal PDE10A availability and associated local neural dysfunctions in patients with schizophrenia.


Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Phosphoric Diester Hydrolases/metabolism , Positron-Emission Tomography/methods , Basal Ganglia , Glutamates
8.
Neurology ; 100(3): e264-e274, 2023 01 17.
Article En | MEDLINE | ID: mdl-36175151

BACKGROUND AND OBJECTIVES: Previous studies have evaluated the diagnostic effect of amyloid PET in selected research cohorts. However, these studies did not assess the clinical impact of the combination of amyloid and tau PETs. Our objective was to evaluate the association of the combination of 2 PETs with changes in diagnosis, treatment, and management in a memory clinic cohort. METHODS: All participants underwent amyloid [18F]florbetaben PET and tau PET using [18F]PI-2620 or [18F]Florzolotau, which are potentially useful for the diagnosis of non-Alzheimer disease (AD) tauopathies. Dementia specialists determined a pre- and post-PET diagnosis that existed in both a clinical syndrome (cognitive normal [CN], mild cognitive impairment [MCI], and dementia) and suspected etiology, with a confidence level. In addition, the dementia specialists determined patient treatment in terms of ancillary investigations and management. RESULTS: Among 126 registered participants, 84.9% completed the study procedures and were included in the analysis (CN [n = 40], MCI [n = 25], AD [n = 20], and non-AD dementia [n = 22]). The etiologic diagnosis changed in 25.0% in the CN, 68.0% in the MCI, and 23.8% with dementia. Overall changes in management between pre- and post-PET occurred in 5.0% of CN, 52.0% of MCI, and 38.1% of dementia. Logistic regression analysis revealed that tau PET has stronger associations with change management than amyloid PET in all participants and dementia groups. DISCUSSION: The combination of amyloid and tau PETs was associated with changes in management and diagnosis of MCI and dementia, and the second-generation tau PET has a strong impact on the changes in diagnosis and management in memory clinics. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that the combination of amyloid and tau PETs was associated with changes in management and diagnosis of MCI and dementia.


Cognitive Dysfunction , Dementia , Humans , tau Proteins , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/complications , Amyloid , Amyloidogenic Proteins , Positron-Emission Tomography/methods , Dementia/diagnostic imaging , Dementia/therapy , Amyloid beta-Peptides , Biomarkers
9.
J Clin Psychiatry ; 83(5)2022 08 24.
Article En | MEDLINE | ID: mdl-36005893

Objective: Previous prediction models for electroconvulsive therapy (ECT) responses have predominantly been based on neuroimaging data, which has precluded widespread application for severe cases in real-world clinical settings. The aims of this study were (1) to build a clinically useful prediction model for ECT remission based solely on clinical information and (2) to identify influential features in the prediction model.Methods: We conducted a retrospective chart review to collect data (registered between April 2012 and March 2019) from individuals with depression (unipolar major depressive disorder or bipolar disorder) diagnosed via DSM-IV-TR criteria who received ECT at Keio University Hospital. Clinical characteristics were used as candidate features. A light gradient boosting machine was used for prediction, and 5-fold cross-validation was performed to validate our prediction model.Results: In total, 177 patients with depression underwent ECT during the study period. The remission rate was 63%. Our model predicted individual patient outcomes with 71% accuracy (sensitivity, 86%; specificity, 46%). A shorter duration of the current episodes, lower baseline severity, higher dose of antidepressant medications before ECT, and lower body mass index were identified as important features for predicting remission following ECT.Conclusions: We developed a prediction model for ECT remission based solely on clinical information. Our prediction model demonstrated accuracy comparable to that in previous reports. Our model suggests that introducing ECT earlier in the treatment course may contribute to improvements in clinical outcomes.


Bipolar Disorder , Depressive Disorder, Major , Electroconvulsive Therapy , Bipolar Disorder/diagnosis , Bipolar Disorder/therapy , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/therapy , Electroconvulsive Therapy/methods , Humans , Machine Learning , Retrospective Studies , Treatment Outcome
10.
Neuropsychopharmacol Rep ; 42(4): 437-448, 2022 12.
Article En | MEDLINE | ID: mdl-35843629

BACKGROUND: Alzheimer's disease (AD) is the most common cause of dementia worldwide. In AD, abnormal tau accumulates within neurons of the brain, facilitated by extracellular ß-amyloid deposition, leading to neurodegeneration, and eventually, cognitive impairment. As this process is thought to be irreversible, early identification of abnormal tau in the brain is crucial for the development of new therapeutic interventions. AIMS: 18 F-PI-2620 is one of the second-generation tau PET tracers with presumably less off-target binding than its predecessors. Although a few clinical studies have recently reported the use of 18 F-PI-2620 tau PET in patients with AD, its applicability to AD is yet to be thoroughly examined. METHODS: In the present pilot study, we performed 18 F-PI-2620 tau PET in seven cases of probable AD (AD group) and seven healthy controls (HC group). Standardized uptake value ratios (SUVR) in regions of interest (ROIs) in the medial temporal region and neocortex were compared between the AD and HC groups. Furthermore, correlations between regional SUVR and plasma p-tau181 as well as cognitive test scores were also analyzed. RESULTS: The uptake of 18 F-PI-2620 was distinctly increased in the AD group across all the ROIs. SUVR in all the target ROIs were significantly correlated with plasma p-tau181 levels, as well as with MMSE and ADAS-cog scores. DISCUSSION & CONCLUSION: Our results add to accumulating evidence suggesting that 18 F-PI-2620 is a promising tau PET tracer that allows patients with AD to be distinguished from healthy controls, although a study with a larger sample size is warranted.


Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Pilot Projects , East Asian People , Positron-Emission Tomography/methods
11.
Parkinsonism Relat Disord ; 98: 92-98, 2022 05.
Article En | MEDLINE | ID: mdl-35533530

INTRODUCTION: Corticobasal degeneration (CBD) is the most common neuropathological substrate for clinically diagnosed corticobasal syndrome (CBS), while identifying CBD pathology in living individuals has been challenging. This study aimed to examine the capability of positron emission tomography (PET) to detect CBD-type tau depositions and neuropathological classification of CBS. METHODS: Sixteen CBS cases diagnosed by Cambridge's criteria and 12 cognitively healthy controls (HCs) underwent PET scans with 11C-PiB, 11C-PBB3, and 18F-FDG, along with T1-weighted magnetic resonance imaging. Amyloid positivity was assessed by visual inspection of 11C-PiB retentions. Tau positivity was judged by quantitative comparisons of 11C-PBB3 binding to HCs. RESULTS: Sixteen CBS cases consisted of two cases (13%) with amyloid and tau positivities indicative of Alzheimer's disease (AD) pathologies, 11 cases (69%) with amyloid negativity and tau positivity, and three cases (19%) with amyloid and tau negativities. Amyloid(-), tau(+) CBS cases showed increased retentions of 11C-PBB3 in the frontoparietal areas, basal ganglia, and midbrain, and reduced metabolism in the precentral gyrus and thalamus relative to HCs. The enhanced tau probe retentions in the frontal gray and white matters partially overlapped with metabolic deficits and atrophy and correlated with Clinical Dementia Rating scores. CONCLUSIONS: PET-based classification of CBS was in accordance with previous neuropathological reports on the prevalences of AD, non-AD tauopathies, and others in CBS. The current work suggests that 11C-PBB3-PET may assist the biological classification of CBS and understanding of links between CBD-type tau depositions and neuronal deteriorations leading to cognitive declines.


Alzheimer Disease , Corticobasal Degeneration , Alzheimer Disease/metabolism , Fluorodeoxyglucose F18 , Humans , Magnetic Resonance Imaging , Positron-Emission Tomography , tau Proteins/metabolism
13.
Eur J Nucl Med Mol Imaging ; 49(9): 3150-3161, 2022 07.
Article En | MEDLINE | ID: mdl-35022846

PURPOSE: Monoacylglycerol lipase (MAGL) regulates cannabinoid neurotransmission and the pro-inflammatory arachidonic acid pathway by degrading endocannabinoids. MAGL inhibitors may accordingly act as cannabinoid-potentiating and anti-inflammatory agents. Although MAGL dysfunction has been implicated in neuropsychiatric disorders, it has never been visualized in vivo in human brain. The primary objective of the current study was to visualize MAGL in the human brain using the novel PET ligand 18F-T-401. METHODS: Seven healthy males underwent 120-min dynamic 18F-T-401-PET scans with arterial blood sampling. Six subjects also underwent a second PET scan with 18F-T-401 within 2 weeks of the first scan. For quantification of MAGL in the human brain, kinetic analyses using one- and two-tissue compartment models (1TCM and 2TCM, respectively), along with multilinear analysis (MA1) and Logan graphical analysis, were performed. Time-stability and test-retest reproducibility of 18F-T-401-PET were also evaluated. RESULTS: 18F-T-401 showed rapid uptake and gradual washout from the brain. Logan graphical analysis showed linearity in all subjects, indicating reversible radioligand kinetics. Using a metabolite-corrected arterial input function, MA1 estimated regional total distribution volume (VT) values by best identifiability. VT values were highest in the cerebral cortex, moderate in the thalamus and putamen, and lowest in white matter and the brainstem, which was in agreement with regional MAGL expression in the human brain. Time-stability analysis showed that MA1 estimated VT values with a minimal bias even using truncated 60-min scan data. Test-retest reliability was also excellent with the use of MA1. CONCLUSIONS: Here, we provide the first demonstration of in vivo visualization of MAGL in the human brain. 18F-T-401 showed excellent test-retest reliability, reversible kinetics, and stable estimation of VT values consistent with known regional MAGL expressions. PET with 18F-T-401-PET is promising tool for measurement of central MAGL.


Cannabinoids , Monoacylglycerol Lipases , Brain/diagnostic imaging , Brain/metabolism , Cannabinoids/metabolism , Humans , Male , Monoacylglycerol Lipases/metabolism , Positron-Emission Tomography/methods , Reproducibility of Results , Tissue Distribution
14.
Brain Commun ; 3(4): fcab190, 2021.
Article En | MEDLINE | ID: mdl-34632382

Tau aggregates represent a key pathologic feature of Alzheimer's disease and other neurodegenerative diseases. Recently, PET probes have been developed for in vivo detection of tau accumulation; however, they are limited because of off-target binding and a reduced ability to detect tau in non-Alzheimer's disease tauopathies. The novel tau PET tracer, [18F]PI-2620, has a high binding affinity and specificity for aggregated tau; therefore, it was hypothesized to have desirable properties for the visualization of tau accumulation in Alzheimer's disease and non-Alzheimer's disease tauopathies. To assess the ability of [18F]PI-2620 to detect regional tau burden in non-Alzheimer's disease tauopathies compared with Alzheimer's disease, patients with progressive supranuclear palsy (n = 3), corticobasal syndrome (n = 2), corticobasal degeneration (n = 1) or Alzheimer's disease (n = 8), and healthy controls (n = 7) were recruited. All participants underwent MRI, amyloid ß assessment and [18F]PI-2620 PET (Image acquisition at 60-90 min post-injection). Cortical and subcortical tau accumulations were assessed by calculating standardized uptake value ratios using [18F]PI-2620 PET. For pathologic validation, tau pathology was assessed using tau immunohistochemistry and compared with [18F]PI-2620 retention in an autopsied case of corticobasal degeneration. In Alzheimer's disease, focal retention of [18F]PI-2620 was evident in the temporal and parietal lobes, precuneus, and cingulate cortex. Standardized uptake value ratio analyses revealed that patients with non-Alzheimer's disease tauopathies had elevated [18F]PI-2620 uptake only in the globus pallidus, as compared to patients with Alzheimer's disease, but not healthy controls. A head-to-head comparison of [18F]PI-2620 and [18F]PM-PBB3, another tau PET probe for possibly visualizing the four-repeat tau pathogenesis in non-Alzheimer's disease, revealed different retention patterns in one subject with progressive supranuclear palsy. Imaging-pathology correlation analysis of the autopsied patient with corticobasal degeneration revealed no significant correlation between [18F]PI-2620 retention in vivo. High [18F]PI-2620 uptake at 60-90 min post-injection in the globus pallidus may be a sign of neurodegeneration in four-repeat tauopathy, but not necessarily practical for diagnosis of non-Alzheimer's disease tauopathies. Collectively, this tracer is a promising tool to detect Alzheimer's disease-tau aggregation. However, late acquisition PET images of [18F]PI-2620 may have limited utility for reliable detection of four-repeat tauopathy because of lack of correlation between post-mortem tau pathology and different retention pattern than the non-Alzheimer's disease-detectable tau radiotracer, [18F]PM-PBB3. A recent study reported that [18F]PI-2620 tracer kinetics curves in four-repeat tauopathies peak earlier (within 30 min) than Alzheimer's disease; therefore, further studies are needed to determine appropriate PET acquisition times that depend on the respective interest regions and diseases.

15.
Hum Brain Mapp ; 42(12): 4048-4058, 2021 08 15.
Article En | MEDLINE | ID: mdl-34014611

Although striatal dopamine neurotransmission is believed to be functionally linked to the formation of the corticostriatal network, there has been little evidence for this regulatory process in the human brain and its disruptions in neuropsychiatric disorders. Here, we aimed to investigate associations of striatal dopamine transporter (DAT) and D2 receptor availabilities with gray matter (GM) volumes in healthy humans. Positron emission tomography images of D2 receptor (n = 34) and DAT (n = 17) captured with the specific radioligands [11 C]raclopride and [18 F]FE-PE2I, respectively, were acquired along with T1-weighted magnetic resonance imaging data in our previous studies, and were re-analyzed in this work. We quantified the binding potentials (BPND ) of these radioligands in the limbic, executive, and sensorimotor functional subregions of the striatum. Correlations between the radioligand BPND and regional GM volume were then examined by voxel-based morphometry. In line with the functional and anatomical connectivity, [11 C]raclopride BPND in the limbic striatum was positively correlated with volumes of the uncal/parahippocampal gyrus and adjacent temporal areas. Similarly, we found positive correlations between the BPND of this radioligand in the executive striatum and volumes of the prefrontal cortices and their adjacent areas as well as between the BPND in the sensorimotor striatum and volumes of the somatosensory and supplementary motor areas. By contrast, no significant correlation was found between [18 F]FE-PE2I BPND and regional GM volumes. Our results suggest unique structural and functional corticostriatal associations involving D2 receptor in healthy humans, which might be partially independent of the nigrostriatal pathway reflected by striatal DAT.


Dopamine Plasma Membrane Transport Proteins/metabolism , Gray Matter/metabolism , Neostriatum/metabolism , Prefrontal Cortex/metabolism , Receptors, Dopamine D2/metabolism , Ventral Striatum/metabolism , Adult , Gray Matter/diagnostic imaging , Gray Matter/pathology , Humans , Magnetic Resonance Imaging , Male , Neostriatum/diagnostic imaging , Neostriatum/pathology , Positron-Emission Tomography , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/pathology , Radiopharmaceuticals/pharmacokinetics , Ventral Striatum/diagnostic imaging , Ventral Striatum/pathology , Young Adult
16.
Eur J Nucl Med Mol Imaging ; 48(9): 2846-2855, 2021 08.
Article En | MEDLINE | ID: mdl-33566152

PURPOSE: Phosphodiesterase 7 (PDE7) is an enzyme that selectively hydrolyses cyclic adenosine monophosphate, and its dysfunction is implicated in neuropsychiatric diseases. However, in vivo visualization of PDE7 in human brains has hitherto not been possible. Using the novel PET ligand 11C-MTP38, which we recently developed, we aimed to image and quantify PDE7 in living human brains. METHODS: Seven healthy males underwent a 90-min PET scan after injection of 11C-MTP38. We performed arterial blood sampling and metabolite analysis of plasma in six subjects to obtain a metabolite-corrected input function. Regional total distribution volumes (VTs) were estimated using compartment models, and Logan plot and Ichise multilinear analysis (MA1). We further quantified the specific radioligand binding using the original multilinear reference tissue model (MRTMO) and standardized uptake value ratio (SUVR) method with the cerebellar cortex as reference. RESULTS: PET images with 11C-MTP38 showed relatively high retentions in several brain regions, including in the striatum, globus pallidus, and thalamus, as well as fast washout from the cerebellar cortex, in agreement with the known distribution of PDE7. VT values were robustly estimated by two-tissue compartment model analysis (mean VT = 4.2 for the pallidum), Logan plot, and MA1, all in excellent agreement with each other, suggesting the reversibility of 11C-MTP38 binding. Furthermore, there were good agreements between binding values estimated by indirect method and those estimated by both MRTMO and SUVR, indicating that these methods could be useful for reliable quantification of PDE7. Because MRTMO and SUVR do not require arterial blood sampling, they are the most practical for the clinical use of 11C-MTP38-PET. CONCLUSION: We have provided the first demonstration of PET visualization of PDE7 in human brains. 11C-MTP38 is a promising novel PET ligand for the quantitative investigation of central PDE7.


Cyclic Nucleotide Phosphodiesterases, Type 7 , Positron-Emission Tomography , Algorithms , Brain/diagnostic imaging , Humans , Ligands , Male , Radiopharmaceuticals
17.
Front Psychiatry ; 12: 772339, 2021.
Article En | MEDLINE | ID: mdl-34975575

Multichannel near-infrared spectroscopy (NIRS), including 52-channel NIRS (52ch-NIRS), has been used increasingly to capture hemodynamic changes in the brain because of its safety, low cost, portability, and high temporal resolution. However, optode caps might cause pain and motion artifacts if worn for extended periods of time because of the weight of the cables and the pressure of the optodes on the scalp. Recently, a small NIRS apparatus called compact NIRS (cNIRS) has been developed, and uses only a few flexible sensors. Because this device is expected to be more suitable than 52ch-NIRS in the clinical practice for patients with children or psychiatric conditions, we tested whether the two systems were clinically comparable. Specifically, we evaluated the correlation between patterns of hemodynamic changes generated by 52ch-NIRS and cNIRS in the frontopolar region. We scanned 14 healthy adults with 52ch-NIRS and cNIRS, and measured activation patterns of oxygenated-hemoglobin [oxy-Hb] and deoxygenated-hemoglobin [deoxy-Hb] in the frontal pole while they performed a verbal fluency task. We performed detailed temporal domain comparisons of time-course patterns between the two NIRS-based signals. We found that 52ch-NIRS and cNIRS showed significant correlations in [oxy-Hb] and [deoxy-Hb] time-course changes in numerous channels. Our findings indicate that cNIRS and 52ch-NIRS capture similar task-dependent hemodynamic changes due to metabolic demand, which supports the validity of cNIRS measurement techniques. Therefore, this small device has a strong potential for clinical application with infants and children, as well as for use in the rehabilitation or treatment of patients with psychiatric disorders using biofeedback.

18.
Neuron ; 109(1): 42-58.e8, 2021 01 06.
Article En | MEDLINE | ID: mdl-33125873

A panel of radiochemicals has enabled in vivo positron emission tomography (PET) of tau pathologies in Alzheimer's disease (AD), although sensitive detection of frontotemporal lobar degeneration (FTLD) tau inclusions has been unsuccessful. Here, we generated an imaging probe, PM-PBB3, for capturing diverse tau deposits. In vitro assays demonstrated the reactivity of this compound with tau pathologies in AD and FTLD. We could also utilize PM-PBB3 for optical/PET imaging of a living murine tauopathy model. A subsequent clinical PET study revealed increased binding of 18F-PM-PBB3 in diseased patients, reflecting cortical-dominant AD and subcortical-dominant progressive supranuclear palsy (PSP) tau topologies. Notably, the in vivo reactivity of 18F-PM-PBB3 with FTLD tau inclusion was strongly supported by neuropathological examinations of brains derived from Pick's disease, PSP, and corticobasal degeneration patients who underwent PET scans. Finally, visual inspection of 18F-PM-PBB3-PET images was indicated to facilitate individually based identification of diverse clinical phenotypes of FTLD on a neuropathological basis.


Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Benzothiazoles/metabolism , Carbon Radioisotopes/metabolism , Tauopathies/diagnostic imaging , Tauopathies/metabolism , Aged , Alzheimer Disease/genetics , Animals , Female , Humans , Male , Mice , Mice, Transgenic , Middle Aged , Positron-Emission Tomography/methods , Tauopathies/genetics
19.
Neuroimage ; 226: 117543, 2021 02 01.
Article En | MEDLINE | ID: mdl-33186713

BACKGROUND: The dopamine (DA) neurotransmission has been implicated in fundamental brain functions, exemplified by movement controls, reward-seeking, motivation, and cognition. Although dysregulation of DA neurotransmission in the striatum is known to be involved in diverse neuropsychiatric disorders, it is yet to be clarified whether components of the DA transmission, such as synthesis, receptors, and reuptake are coupled with each other to homeostatically maintain the DA neurotransmission. The purpose of this study was to investigate associations of the DA synthesis capacity with the availabilities of DA transporters and D2 receptors in the striatum of healthy subjects. METHODS: First, we examined correlations between the DA synthesis capacity and DA transporter availability in the caudate and putamen using PET data with L-[ß-11C]DOPA and [18F]FE-PE2I, respectively, acquired from our past dual-tracer studies. Next, we investigated relationships between the DA synthesis capacity and D2 receptor availability employing PET data with L-[ß-11C]DOPA and [11C]raclopride, respectively, obtained from other previous dual-tracer assays. RESULTS: We found a significant positive correlation between the DA synthesis capacity and DA transporter availability in the putamen, while no significant correlations between the DA synthesis capacity and D2 receptor availability in the striatum. CONCLUSION: The intimate association of the DA synthesis rate with the presynaptic reuptake of DA indicates homeostatic maintenance of the baseline synaptic DA concentration. In contrast, the total abundance of D2 receptors, which consist of presynaptic autoreceptors and postsynaptic modulatory receptors, may not have an immediate relationship to this regulatory mechanism.


Brain/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine/biosynthesis , Receptors, Dopamine D2/metabolism , Adult , Brain/diagnostic imaging , Caudate Nucleus/diagnostic imaging , Caudate Nucleus/metabolism , Humans , Male , Positron-Emission Tomography , Putamen/diagnostic imaging , Putamen/metabolism , Synaptic Transmission/physiology , Young Adult
20.
Front Aging Neurosci ; 12: 592979, 2020.
Article En | MEDLINE | ID: mdl-33343333

In developed countries, the number of traffic accidents caused by older drivers is increasing. Approximately half of the older drivers who cause fatal accidents are cognitively normal. Thus, it is important to identify older drivers who are cognitively normal but at high risk of causing fatal traffic accidents. However, no standardized method for assessing the driving ability of older drivers has been established. We aimed to establish an objective assessment of driving ability and to clarify the neural basis of unsafe driving in healthy older people. We enrolled 32 healthy older individuals aged over 65 years and classified unsafe drivers using an on-road driving test. We then utilized a machine learning approach to distinguish unsafe drivers from safe drivers based on clinical features and gray matter volume data. Twenty-one participants were classified as safe drivers and 11 participants as unsafe drivers. A linear support vector machine classifier successfully distinguished unsafe drivers from safe drivers with 87.5% accuracy (sensitivity of 63.6% and specificity of 100%). Five parameters (age and gray matter volume in four cortical regions, including the left superior part of the precentral sulcus, the left sulcus intermedius primus [of Jensen], the right orbital part of the inferior frontal gyrus, and the right superior frontal sulcus), were consistently selected as features for the final classification model. Our findings indicate that the cortical regions implicated in voluntary orienting of attention, decision making, and working memory may constitute the essential neural basis of driving behavior.

...